Ensure Generative AI reliability​

Bid farewell to inaccuracies in AI outputs – empower your Generative AI/LLMs (Chat-GPT-like models) to provide guidance for your teams based on up-to-date, contextualized, and reliable information.

Businesswoman sitting at a desk and working with generative AI in the office. Symbols for connectivity and sustainability appear over her laptop.
Based on our work with
Brantner Logo
logo-walstead

AI isn’t perfect​

The race to implement Generative AI (GenAI) put executives under immense pressure to deliver immediate and tangible results. Feeling the heat, most companies are looking for quick wins, but over 40 percent of AI initiatives are stalling in the scaling phase.

To create long-term results, executives need to factor in the limitations of AI and create a solid foundation for their AI initiatives, ensuring accuracy and reliability.

86%

of users have personally experienced AI hallucinations

Basierend auf Studien mit über 300
Unternehmen beträgt die
durchschnittliche Suchzeit für eine
Guideline 30 Minuten. qibri
ermöglicht es jedem Mitarbeiter und
jeder Mitarbeiterin, jede Guideline in
weniger als 3 Minuten zu finden.

56%

of business users report inaccuracy as a concern (#1 GenAI-related risk)

Guidelines sind entscheidend, um Verhalten von Mitarbeitenden zu beeinflussen. Aber da sie meist nicht zugänglich sind, können Transformations- Initiativen sie nicht als Hebel für Veränderungen nutzen. qibri macht es Transformations-Initiativen leicht, auf Richtlinien zuzugreifen und sie - auch an der internen "Politik" vorbei - anzupassen, was Transformationen 3-mal effektiver macht.
$4 Million

The cost of training a large language model such as GPT-3

Einkaufskosten werden in erster Linie durch technische und funktionale Anforderungen bestimmt, die von Experten, verteilt über das Unternehmen, festgelegt werden. Skaleneffekte können damit nicht gehoben werden. qibri ermöglicht die übergreifende Abstimmung zwischen den Experten, was zu Einsparungen von 5-30% je Einkaufskategorie führen kann.

Even AI struggles with deteriorated data

Many employees have already embraced GenAI at work, but models like ChatGPT lack insight into a company’s unique knowledge. Even if the AI system is based on internal content, relying on uncurated historical information leaves it out of touch with current realities (e.g. new market needs, strategies, regulations…) and creates issues with reliability and accuracy.

this simple chart shows that garbage in garbage out is also a problem for Large Language Models. At the top a garbage container icon appears, points to a brain icon representing LLMs which then points to another garbage container icon.

To adopt a dynamic approach and take your AI game to the next level, it is essential to ensure six dimensions of data quality: accuracy, completeness, consistency, timeliness, integrity, and validity. This means addressing the root cause of the issue and maintaining a clutter-free know-how base.

Methods such as prompt engineering, fine-tuning, and reinforcement learning claim to enhance outputs but are often slow, unstable, and costly. Even popular methods such as retrieval augmented generation (RAG) require accurate and reliable input for success.

Why qibri for AI reliability?

The quality of your LLM outputs can only be as good as the quality of your data, regardless of how advanced the technology behind it is. We believe that when managed well, know-how content (e.g. guidelines, SOPs, best practices, and how-tos) can serve as guardrails for data accuracy and GenAI initiatives, rather than another obstacle. qibri can be combined with advanced techniques like RAG, ensuring precision, data reliability, and transparency while minimizing implementation cost and time.

* While the methodologies mentioned above can be combined to improve results, in this table individual application for a company-specific setting is compared. 

Empower LLMs for precise guidance

qibri is a quality-assured and dynamic platform for know-how management focusing on application knowledge(e.g. guidelines, SOPs, best practices, and templates.) It serves as a robust data source for LLMs, providing reliable information and facilitating sustainable updates.

Progress Step

Extract and structure content

We start by taking inventory of all know-how content, assess and  structure them to create a single source of truth for employees and LLMs.

Progress Step 2

Set up a structured and validated platform​

Once we have decluttered your content and extracted essential know-how, we migrate to qibri, a structured and controlled platform designed for managing and continuously improving know-how.

Progress Step 3

Provide context for LLMs and teams​

We work closely with your key stakeholders to understand your organization’s unique needs and create a multidimensional structure to better contextualize existing know-how.

qibri fitted to your company - en
Progress Step 4

Sustain collaboration and regular updates​

We offer back-office functionality to ensure your content is always up-to-date and provide a space for frictionless collaboration to improve know-how content.

Data governance

Break free from the black box AI approach. Gain precise control over the data feeding into your LLMs, ensuring transparency.

Cost-efficiency

Minimize the financial burden associated with training and optimizing LLMs by solving AI reliability issue at the source.

Enhanced productivity

Identify synergies, harmonize processes, and standardize information flow across your organization.

Meet our technology partner

ONTEC AI offers a Generative AI solution based on RAG (retrieval augmented generation) technology and LLM. By partnering with qibri, we are able to equip our clients with a holistic solution for knowledge management, providing a up-to-date pool of know-how and enabling users to quickly find relevant content in a matter of seconds with a AI-based chat function.

Is poor know-how management slowing key initiatives?

Improve accuracy and reliability for GenAI

Tidio Study:
When machines dream

McKinsey & Company Study:
State of AI report

CNBC article:
ChatGPT and generative AI are booming, but the costs can be extraordinary

bis zu 30% gesparte Material & Service Kosten

mit qibri

Warum wir das sagen:
Einkaufskosten werden in erster Linie durch technische und funktionale Anforderungen bestimmt, die von Experten, verteilt über das Unternehmen, festgelegt werden. Skaleneffekte können damit nicht gehoben werden. qibri ermöglicht die übergreifende Abstimmung zwischen den Experten, was zu Einsparungen von 5-30% je Einkaufskategorie führen kann.

3x Transformationswirkung

mit qibri

Warum wir das sagen:
Guidelines sind entscheidend, um Verhalten von Mitarbeitenden zu beeinflussen. Aber da sie meist nicht zugänglich sind, können Transformations-Initiativen sie nicht als Hebel für Veränderungen nutzen. qibri macht es Transformations-Initiativen leicht, auf Richtlinien zuzugreifen und sie – auch an der internen “Politik” vorbei – anzupassen, was Transformationen 3-mal effektiver macht.

-90% Suchzeiten

mit qibri

Warum wir das sagen:
Basierend auf Studien mit über 300 Unternehmen beträgt die durchschnittliche Suchzeit für eine Guideline 30 Minuten. qibri ermöglicht es jedem Mitarbeiter und jeder Mitarbeiterin, jede Guideline inweniger als 3 Minuten zu finden.

SucheZeit-Einsparung_DE

🍪 Accept Cookies?

Cookies allow us to control campaigns and optimize our website. By clicking “Accept all” you agree to the use of all cookies and enter the website. More about this in the Privacy Policy.

Sie möchten sehen, was qibri für Sie tun kann?

Melden Sie sich zum individuellen Termin an:

Mit der Anmeldung stimmen Sie unserer Datenschutzerklärung zu.